Spare guanylyl cyclase NO receptors ensure high NO sensitivity in the vascular system.

نویسندگان

  • Evanthia Mergia
  • Andreas Friebe
  • Oliver Dangel
  • Michael Russwurm
  • Doris Koesling
چکیده

In the vascular system, the receptor for the signaling molecule NO, guanylyl cyclase (GC), mediates smooth muscle relaxation and inhibition of platelet aggregation by increasing intracellular cyclic GMP (cGMP) concentration. The heterodimeric GC exists in 2 isoforms (alpha1-GC, alpha2-GC) with indistinguishable regulatory properties. Here, we used mice deficient in either alpha1- or alpha2-GC to dissect their biological functions. In platelets, alpha1-GC, the only isoform present, was responsible for NO-induced inhibition of aggregation. In aortic tissue, alpha1-GC, as the major isoform (94%), mediated vasodilation. Unexpectedly, alpha2-GC, representing only 6% of the total GC content in WT, also completely relaxed alpha1-deficient vessels albeit higher NO concentrations were needed. The functional impact of the low cGMP levels produced by alpha2-GC in vivo was underlined by pronounced blood pressure increases upon NO synthase inhibition. As a fractional amount of GC was sufficient to mediate vasorelaxation at higher NO concentrations, we conclude that the majority of NO-sensitive GC is not required for cGMP-forming activity but as NO receptor reserve to increase sensitivity toward the labile messenger NO in vivo.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Increased sensitivity to endothelial nitric oxide/NO contributes to arterial normotension in mice with vascular smooth muscle - selective deletion of the ANP-receptor

Running title: Vascular interactions between ANP and NO Classification: Biological Sciences, Physiology Manuscript information: 21 pages, 6 figures; abstract with 245 words, 5151 words in total. Abbreviations footnote: ANP, atrial natriuretic peptide; CNP, C-type natriuretic peptide; NO, nitric oxide; GC-A, guanylyl cyclase-A; sGC, soluble guanylyl cyclase; PKG I, cGMPdependent Protein Kinase I...

متن کامل

The beta2 subunit inhibits stimulation of the alpha1/beta1 form of soluble guanylyl cyclase by nitric oxide. Potential relevance to regulation of blood pressure.

Cytosolic guanylyl cyclases (GTP pyrophosphate-lyase [cyclizing; EC 4.6.1.2]), primary receptors for nitric oxide (NO) generated by NO synthases, are obligate heterodimers consisting of an alpha and a beta subunit. The alpha1/beta1 form of guanylyl cyclase has the greatest activity and is considered the universal form. An isomer of the beta1 subunit, i.e., beta2, has been detected in the liver ...

متن کامل

Selective guanylyl cyclase inhibitor reverses nitric oxide-induced vasorelaxation.

Effects of a novel soluble guanylyl cyclase inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), were characterized on guanylyl cyclase activity in cytosolic fraction of COS-7 cells overexpressing the alpha 1 and beta 1 subunits of the rat soluble enzyme. ODQ was a noncompetitive inhibitor of soluble guanylyl cyclase with respect to Mn2+ or Mn(2+)-GTP and was a mixed competitive/noncom...

متن کامل

Increased nitrovasodilator sensitivity in endothelial nitric oxide synthase knockout mice: role of soluble guanylyl cyclase.

Endogenously produced nitric oxide (NO) modulates nitrovasodilator-induced relaxation. We investigated the underlying mechanism in wild-type (WT) mice and endothelial NO synthase knockout (eNOS(-/-)) mice to determine whether a chronic lack of endothelial NO alters the soluble guanylyl cyclase (sGC) pathway. In aortic segments from eNOS(-/-) mice, the vasodilator sensitivity to sodium nitroprus...

متن کامل

Nitric oxide-sensitive soluble guanylyl cyclase activity is preserved in internal mammary artery of type 2 diabetic patients.

Vascular reactivity to nitric oxide (NO) is mediated by NO-sensitive soluble guanylyl cyclase (sGC). Since a diminished activity of vascular sGC has been reported in an animal model of type 2 diabetes, the sGC activity was assayed in vitro in internal mammary artery specimens obtained during bypass surgery from patients with and without type 2 diabetes. The sensitivity of sGC to NO, which is de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 116 6  شماره 

صفحات  -

تاریخ انتشار 2006